Functional Notch signaling is required for BMP4-induced inhibition of myogenic differentiation.

نویسندگان

  • Camilla Dahlqvist
  • Andries Blokzijl
  • Gavin Chapman
  • Anna Falk
  • Karin Dannaeus
  • Carlos F Ibâñez
  • Urban Lendahl
چکیده

The bone morphogenetic protein (BMP) and Notch signaling pathways are crucial for cellular differentiation. In many cases, the two pathways act similarly; for example, to inhibit myogenic differentiation. It is not known whether this inhibition is caused by distinct mechanisms or by an interplay between Notch and BMP signaling. Here we demonstrate that functional Notch signaling is required for BMP4-mediated block of differentiation of muscle stem cells, i.e. satellite cells and the myogenic cell line C2C12. Addition of BMP4 during induction of differentiation dramatically reduced the number of differentiated satellite and C2C12 cells. Differentiation was substantially restored in BMP4-treated cultures by blocking Notch signaling using either the gamma-secretase inhibitor L-685,458 or by introduction of a dominant-negative version of the Notch signal mediator CSL. BMP4 addition to C2C12 cells increased transcription of two immediate Notch responsive genes, Hes1 and Hey1, an effect that was abrogated by L-685,458. A 3 kb Hey1-promoter reporter construct was synergistically activated by the Notch 1 intracellular domain (Notch 1 ICD) and BMP4. The BMP4 mediator SMAD1 mimicked BMP activation of the Hey1 promoter. A synthetic Notch-responsive promoter containing no SMAD1 binding sites responded to SMAD1, indicating that DNA-binding activity of SMAD1 is not required for activation. Accordingly, Notch 1 ICD and SMAD1 interacted in binding experiments in vitro. Thus, the data presented here provide evidence for a direct interaction between the Notch and BMP signaling pathways, and indicate that Notch has a crucial role in the execution of certain aspects of BMP-mediated differentiation control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of Delta-like 1 shedding in muscle cell self-renewal and differentiation.

Myogenic cells have the ability to adopt two divergent fates upon exit from the cell cycle: differentiation or self-renewal. The Notch signaling pathway is a well-known negative regulator of myogenic differentiation. Using mouse primary myoblasts cultured in vitro or C2C12 myogenic cells, we found that Notch activity is essential for maintaining the expression of Pax7, a transcription factor as...

متن کامل

Interaction of Wnt Signaling with BMP/Smad Signaling during the Transition from Cell Proliferation to Myogenic Differentiation in Mouse Myoblast-Derived Cells

Background. Wnt signaling is involved in muscle formation through β-catenin-dependent or -independent pathways, but interactions with other signaling pathways including transforming growth factor β/Smad have not been precisely elucidated. Results. As Wnt4 stimulates myogenic differentiation by antagonizing myostatin (GDF8) activity, we examined the role of Wnt4 signaling during muscle different...

متن کامل

9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways

Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...

متن کامل

Combinatorial Signals of Activin/Nodal and Bone Morphogenic Protein Regulate the Early Lineage Segregation of Human Embryonic Stem Cells*S⃞

Cell fate commitment of pre-implantation blastocysts, to either the inner cell mass or trophoblast, is the first step in cell lineage segregation of the developing human embryo. However, the intercellular signals that control fate determination of these cells remain obscure. Human embryonic stem cells (hESCs) provide a unique model for studying human early embryonic development. We have previou...

متن کامل

Stra13 regulates satellite cell activation by antagonizing Notch signaling

Satellite cells play a critical role in skeletal muscle regeneration in response to injury. Notch signaling is vital for satellite cell activation and myogenic precursor cell expansion but inhibits myogenic differentiation. Thus, precise spatial and temporal regulation of Notch activity is necessary for efficient muscle regeneration. We report that the basic helix-loop-helix transcription facto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 130 24  شماره 

صفحات  -

تاریخ انتشار 2003